N64;27231
(’0&@/ /&ZZ, 29 :
70 fansT

e

iILcCo
nowsoue or Tordfotor Gompany,

AERONUTRONIC DIVISION

XEROX
MICROFILM




N B B BN BN . O .

ENGINEERING

Publication

FINAL REPORT

Nc. U-2659

Prepared For:

Contract No.:
Reporting Period:

Prepared By:

AN TEVESTIGATIY

R. R. Auelmann
D. P. Johnson
L. W. Stumpf

George C. Marshall Space Flight Center,
National Aeronautics and Space Administration
Huntsville, Alabama

NAS 8-5248

23 March 1963 - 23 March 1964

Aeronutronic Division, Philco Corporation,
A Subsidiary of Ford Motor Company

Newport Beac

23 April 1964
h, California




. ABSTRACT
Alby =2 72%/
o
This report summarizes investigations which considered the
trajectories resulting from the application of a small thrust to an
object in an inverse square central force field. Amnalytical solutioms

for the special cases involving radial, normal, circumferential, and

tangential thrusting are reviewed and extended. A second-order pertur-
bation theory is derived for a vehicle departing from a circular orbit.
The trajectory is produced by a thrust vector maintained at a constant,
but arbitrarily chosen, angle with respect to the radius vector. Numerical
results of the second-order theory are presented which show representative
low-thrust trajectories. The perturbation theory is extended to accept

et g

elliptical orbit starting conditions.
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SYMBOLS

orbit radius = distances from center of attraction to the vehicle
initial orbit radius

dimensionless orbit radius

time measured from initial position

dimensionless time

polar angle measured from initial position

angle between the radius vector and the instantaneous velocity vector.

angle between the radius vector and the thrust vector
dimensionless arc length

thrust acceleration + initial gravitational acceleration
thrusting force

mean anomaly

mean motion of an initially circular orbit

eccentricity

exp[x] , the exponential function

kinetic energy

velocity

instantaneous energy

instantaneous angular momentum

o1

1/p

the neglected terms of an infinite series in which the coefficients
of the neglected terms have positive powers of g as factors

a derivative with respect to time when the dot is over a variable

deviation from the reference circular orbit radius

v
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SECTION 1

INTRODUCTION

This report summarizes investigations performed at Aeronutronic
under Contract NAS 8-5248, during the period from March 23, 1963 to March 23,
1964. The subject of these investigations has been the trajectories result-
ing from the application of a small thrust to an object in an inverse square
central force field. Interest in low thrust trajectories has been increasing
in parallel with development efforts to accomplish workable low-thrust -
electrical propulsion systems. When the propulsion technclogy has sufficiently
evolved, low thrust devices will find application to such diverse space
missions as interplanetary transfers, station keeping and attitude control
of geocentric satellites, and enlargement or modification of geocentric
satellite orbits.

Analysis of low-thrust trajectories has, for the most part, been
concentrated in areas best suited to interplanetary transfers. ¥For such
transfers, the ratio of thrust acceleration to gravitational acceleration is
such that the trajectory involves a heliocentric arc of less than one
revolution.

Two general approaches have been employed by various investigators
in examining such trajectories. One approach (historically the first) has
been to evaluate, by analytical techniques, the trajectories resulting from

the application of a thrust acceleration which obeys a preselected thrust
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direction program. Thrust programs considered for planar problems have
generally consisted of thrusting along the flight path, normal to the flight
path, along the radius vector, or normal to the radius vector. Of all these
possibilities, only the case of radial thrusting has yielded closed form
analytical solutions. The other thrust programs have been treated approxi-
mately by asymptotic techniques or perturbation theory.

The second general approach to the low thrust trajectory problem
has involved the determination of optimal thrust programs u:ing the calculus
of variations. These efforts are extremely valuable, but are hampered by
analytical complexities which necessitate the use of numerical techmniques for
all but the most trivial cases. These problems are further compounded when
trajectories in a strong gravitational field are considered. Such trajectories
(in geocentric space, for example) may involve mary revolutions about the
central body, making the use of ordinary numerical integration techniques
quite expensive for a given computational accuracy. 1In addition, the
absence of convenient approximate analytical solutions hampers the preliminary
analysis of such trajectories. These problems supplied the primary motivation
for the present study.

The approach employed in the present étudy belongs in the first
category of analysis described above, i.e., trajectory descriptions for
specified thrust programs are sought. In Section 2, analyfical solutions
for thrust programs involving radial, normal, circdmferential, and tangential
thrusting are reviewed and extended. In Section 3, a second-order perturba-
tion solution is presented which permits thrusting to occur zt arbitrary
constant angles with respect to the radius vector. Sample numerical results
are presented, and the application of the theory to transfers between circular

orbits and to trajectories involving multiple revolutions is discussed.



SECTION 2 -

LOW-THRUST TRAJECTORIES®
SPECIAL CASES

This section contains approximate expressions which dictate the
motion of a vehicle under small constant radial, normal, tangential, and
circumferential thrust accelerations. 7The vehicle under consideration is
initially moving in a circular orbit in an attractive inverse-square,

central force field.

2.1 APPROXIMATE SOLUTION FOR LOW RADIAL THRUST

A particle is moving in a circular Kepler orbit when, at time
t = to’ a constant radial force (thrust) is added. The resulting motion
is exactly described in terms of elliptic integrals of the first, second,
and third kinds. Copelandl, with corrections by Karrenberg2 and Au3, has
carried out the analysis for the four classes of motion: a<0, 0<al l,
a = %3 and a:>%3 where A is the ratio of thrust acieleration to the
initial gravitational acceleration. The value & = §-is significant because
it corresponds to the minimum continuous thrust needed to escape.

The system has an energy integral and a momentum integral which
may be used to define the region of motion as a function of @, In particular,

the motion is periodic when a<~%. The region of motion and periodicity are

reviewed in Section 2.1.1.



The intention here is to derive an approximate analytical descrip-
tion of the motion, not involving elliptic integrals, when the thrust is
numerically small, that is, when |a| <<%‘. As Levi.n4 points out, the
exact solution in terms of elliptic integrals are not particularly convenient
to use.

When the thrust is small, the departure from the initial Kepler
orbit may also be expected to be small. Lass and I..o::ell5 using the method
of Kryloff and Bogoliuboff, and Citron6 using the method of variation of
parameters have determined the first order changes in the Kepler constants
due to a small radial thrust. It is important to know that the Kepler orbit
itself was used as the zero order approximation in these studies. Lass and
Lorell start with an elliptical Kepler orbit and determine the changes in
the constants over a complete revolution. However, Citron starts with a
circular Kepler orbit and determines the instantaneous changes in the constants,

Section 2.12shows that, with respect to a certain pseudo-angle ¢,
the orbit is an ellipse with eccentricity ‘a‘ and mean motion (1-3 &) n_ .
In real space the orbit is quasi-elliptical since the apsidal angle is
(1 +a) 7 rather than 7T .,
2.1.1 REGIONS OF MOTION

A particle of unit mass is acted upon by an attractive inverse
square force -c/r2 and a constant radial force f. The kinetic and potential

energies in plane polar coordinates are
T=-§-[i2+r2 éz] ’ V=-S-fr
r

respectively. Since neither T nor V depend explicitly on the time t, their
sum K is a constant. Also, since neither T nor V are explicit functions of

6 the momentum

h=r’d (1)



is a constant. The energy integral may be expressed as

. 2 2 2 2
l%%—] =[,:—] 2(K+-:'+ fr) -[%] . ¢3)

Dividing by 1:4 and using the transformation u = 1/r, which is familiar in
the solution of the Kepler problem, equation (2) becomes

2
du | _ 2 £ _ 2
{d@] -hz (K+cu+u) u” 3)

If f were zero and if the particle were moving in a circular Kepler orbit

u=1u_, then

o]
cu
- . _0 2 _ ¢
Eo ) R h—u .
[}

At time t = to a force £ is added and a new energy constant K is evaluated,
then

For these initial conditions equation (3) becomes

2
u , :
[SLG'] =-(u°-u)2+zc£[-£--1] _(4)

Dividing by uoz, to make equation (4) nondimensional, and setting




equation (4) becomes
2
[g—%—] --a-niizaxt gy, )
Consider the roots for the equation

F(A) = =1 -0%+2axt a-n) =

When @ = 0, F(X), is quadratic with two equal roots A = 1. When a?éQ,
F(A), is cubic with one real rootA = 1. The other two roots satisfy the

equation
Xz -A+2a =0

which has the roots

theviea |

For |a|<<§ the roots are approx:.m.ately l-2a and 2a . Whena = ;, there

are two equal roots at A = When a< < 8’ but not equal to zero, these roots

1

Ik

are real and unequal, and when a>8, these roots aré complex, The function
= F(A),is sketched in Figure 1. For a,< L the motion is periodic with

limits A = 1 and A = 1 [1+ v1 -8a ], The value a = % corresponds to the

nminimum value for A to approach zero, which implies escape.

With h2 = c/uo and n°2 = cu°3, equation (1) may be written as

6 = no)\-z . (6)

Clearly, 6 >0 means that A is a single-valued function of 6 over the interval

062, -6-
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FIGURE 1. RADIAL THRUST FUNCTION F(X)
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The energy integral may be also written as

E - fr = K

where E is the instaneous energy of the Kepler ellipse which the particle
would follow if f were set equal to zero at any instant of time. In terms
of the initial conditions

mlm

=1-2ax"ta-n . @

(o]

The instantaneous values for the semi-major axis,a,and the eccentricity,e,

for the Kepler orbit are given by

=2 _-\/_.E__
—E ’ e 1 E .
o (o]

1
2.1.2 .AN APPROXIMATE SOLUTION WHEN |al<<§

Wlm
o]

Equation (5) is a first integral of the equation

2
1.D.2.+n=-___q.__

> ®)
de (+n)

where n = A - 1. For |a <<%—, then -2a ¢ m < 0 in which case
d2
——11-2+(1-2a)7)=-“ S
de

is an excellent approximation to equation (8). Setting
¢ = @1-a) 6 | (10)



and dropping terms which contain a2 equation (9) becomes

2
2
d ¢

The solution to equation (11) is

n(¢) =-a+Acos (¢-W,06(p) = - A sin (¢-W) (12).
where tS((l))E%;-5 s

and A and W are constants of integration.

For the initial conditions 7T(0) = 0 and 6(0)

]

0, then A = Q
and W= 0, Wita respect to ¢, the orbit

A(p) =1 -0@ - cos ¢) (13)
is an ellipse with eccentricity a . However, with respect to 6 the orbit is
quasi-elliptical, that is, the apsidal angle is (L + @ )7 rather thanT.
The orbit geometry is sketched in Figure 2a for a> 0 and in Figure 2b for
a> 0.

The time along the orbit is determined by substituting equatiom (113)

into equation (6) and making use of equation (10):
= Q-a)n [1- Q-cosg)]?
=(Q -3a) n (1+ 2acosgp) . A (14)
The solution to equation (14) is

¢-2asin¢=(1-3a)uo(t-to)EM (15)



l

b) a <0

FIGURE 2. RADIAL THRUST TRAJECTORIES
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where to is the constant ui integration. Siuce terms of order a.2 have been
ignored, ¢ may be interpreted as either the eccertric or the true anomaly.
When a >0, ¢ is measured from the radius vector for the uear apse. Con-
versely, when <0, ¢ is measured from the radius vector for the far apse.

It is significant that the mean motion (1 - 3 Q) g predicteu in equation (15)
is different than the mean motion ng for the initial Kepler orbit.

The substitution of equation (13) into equation (7) yields

-1-2a’ (1 - cos ¢) (16)

om‘m

The instantaneous values for a and e for the Kepler ellipse become:

1+2a2 @ - cosd) , 17)

om!m
i

+ |a|¥2@ - cos¢) . (18)

14
i

The average value for e during omne cycle ¢ 0 to 2T is

27 27

<e> ='ng'1—rlf'f2(1 - cos @) do 'L—L 51n~d¢ -4Ala . 19
o

il
o
The expressions (18) and (19) are different than the corresponding expressions
derived by Citron6. The difference arises from the fact that Citron treated
the semi-major axis, a, as a constant wie: he integrated to obtain the
eccentricity, e. However, a is a periocic fuiction of ® as can be seen from

equation (17).

2.2 APPROXIMATE SOLUTION FOR LOW NORMAL THRUST
A particle is moving in an initially circular Kepler orbit when
a constant force is applied perpendicular to the instantaneous velocity

=11~



vector and in the plane of motion. The resulting motion of the particle
under this normal force was studied by Rodrigue:7 who revealed the possi-
bility of reducing the normal case to quadratures. The complete solution
is developed in the following pages for the entire range of normal force.
Since the applied force is perpendicular to the velocity, the energy is
conserved. Consequently, the semi-major axis of the instantaneous Kepler
ellipse (the path which would be traced by a particle if the normal force
were removed) is equal to the radius of the initial circular orbit. The
particle can never move farther than twice the radius of the initial orbit
from the point of central attraction.

The energy integral may be used to reduce the fourth-order system
of equation, which describe the motion, by two orders. A complete reduction
to quadratures is possible when the problem is formulated in plane polar co-
ordinates but, unlike the radiazl case the quadratures are not tabulated
integrals. However, even without evaluating the quadratures, the totality
of motions can be determined. The first step in this direction is to determine
the angular momentum as an explicit function of the distance from the point
of central attraction.

2.2.1 REDUCTION TC QUADRATURES

Let O be the point of central attraction and P be the particle.
The constant normal force per unit of mass f is positive in the direction
shown in Figure 3. The angle between the radial direction and the instantan-
eous velocity vector V is ¢. The unit of mass is selected so that the
universal constant of gravitation is unity. The energy and angular momentum

are given by

respectively. E is constant but h is not, Its time derivative is given by

-12-
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h = - fr cos ¢ =~ fr £/V .

Using the energy integral to eliminate V, the differential form

1
dh = -fr[Z(E+%)] 2 gr

is obtained. Integration in the case wheu E is negative (corresponding to
a Kepler ellipse) provides

1/2
h= —£ 2E + l)ll2 Q 25 -3 ( E)‘ll2 -1 E + l)/-1-: /
T Eve) T " "2 tan r |

+cC |
where C is the constant of integrationm.

The following analysis is based on the condition that the initial
Kepler orbit is circular with radius r . E and the initial value of h are
given by

With the nondimensional parameters

p== | a=fr?
o

(o]

~

the constant of integration becomes

\
C=Nr [1 -a 2+ an ] '
o 4

and \

h=Nr_ E - au(p)]  (20)
-14-



The time quadrature
-1/2
T =fp[2 p- p2-(l -au)z] dP + constant (22)

is analogous to the Kepler equation for the Kepler problem.
The differential equation for the orbit

2 2 '
[ ap P 2 2
Ld_e = m 20 -p° -1 -a0) (23)

is obtained from equation (21) by the operatiocn

dp _ dPdr
d6 ~ dT d@
where
do _ 1_ -
7 - p2 (1 -at) 24)

which follows from the definition h = r2 é.
The orbit equation is also reducible to quadrature:
~1/2
0 Jl:.%.ll [zp-p2 - -a u)2] dp + constant (25)

The quadrature equations (22) and (25) appear to be intractable.
Nevertheless, a complete qualitative description of the motion can be obtained
‘without carrying out the integration.
2.2.2 REGIONS OF MOTION
From equation (21), the motion is imaginary if

£(p) =~ -1)%+ 200 - au?

is negative. A necessary (though not sufficient) condition for the motion
to be real is that aU be positive. An examination of the sign of U shows
that, if the normal force is directed initially outward (inward), the tra-

jectory will never move interior (exterior) to the initial circular orbit.

-16-




The question arises whether or not £(pP) vanishes at any other
value p = a besides 1. Certainly a would depend ona. The two roots for

& which satisfy the equation f(p) = 0 are

1/2
G(P)=%[1i(2p-92) ] 3 (26)
from which

-1
a(0) = [2 - 351-] ~ - 2.809
a(l) =+ o

-1
a(2) = [2 + éiL] ~  0.230

The values for a which satisfy equation (26) are shown as functions of P in
Figure 4. The solid curve in Figure 4 occurs when the minus sign is taken
in equation (26), while the two dashed curves occur when the plus sign is
used. The value of p along these curves is denoted by a. For any given
value of o the function f(p0 ) is positive and the motion is real in the
region between p = 1 and p = a. Exterior regions are inaccessible and are
so labeled in Figure 4.

It is significant that a unique value a @) is required to reach
the origin p = 0 and that a second unique value a(2) is required to reach
the outer limit x = 2. 1Indeed, it is logical to expect the motion to be
qualitatively different in the regions: a<a (@), a(0) <a<0, 0 <a< a (2),
and a>a(2).

2.2.3 .QUALITATIVE DESCRIPTION OF THE MOTION

Considerable information can be obtained by examining equation (21):

2

ap . -02 _ - au)?

[a?‘] “RGEY. RGP <= [20 -p% - @ -aw)?]
17-
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R(P) has the following properties:

(1) 1It is continuous,

(2) It is zero at 0= 1land P = a. The only
exception occurs when a = 0O,

(3) It is positive in the region betweenp = 1
and 0 = a.

(4) dR/dp does not vanish at P = 1 and P = a.
Consequently, the trajectory p = p (7 ) has the following characteristics:

(1) p(T7) lies between p = 1 and p = a for all
values of 7.

(2) dp/dT only vanishes at P = 1 and P = a.
However, at a = O the derivative does not
exist.

3) p(7) = p(-T) when the origin 7= 0 is
taken at p = 1 oxr p = a.

(4) p(T) is periodic with period 2K, that is,

p(T) = p( T + 2K).

The trajectories have the forms shown in Figure 5., It remains to establish
the forms for the orbits, p= p(0).

The direction of motion along the boundary P= 1 is direct. In
fact d@/d T = 1. The direction of motion along the boundary P = a can be
established from equation (24) which provides:

de/dtT > 0 for a(0) < a< a(2)

de/dT < 0 for a < a(0) and @ >0(2)
dog/dT =0 at a= a(2)

dB8/dT =+ as a approaches a (0) from the

positive side
de/dT

as o approaches a (0) from the

negative side

-19-
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An examination of equation (23) shows that do /d6 vanishes at P = 0 and
P = a except at a = 2 where d 0/d O does not exist.
A complete picture (Figure 6) of the orbits can now be formed.
P 1is periodic in Tand 6, however, the orbits themselves are not in general
periodic since they do not close. Indeed, the only periodic orbits which
do exist are isolated. The sign of d6/dT determines whether the motion
is direct or rectrograde. For a = a(2) the orbits have cusps at the outer

boundary and for g = a(0) the orbits pass through zero.

2.3 APPROXTMATE SOTIITION FOR LOW TANGENTIAL OR CIRCUMFERENTIAL THRUST
USING THE ASYMPTOTIC METHOD

Consider the motion of a particle, initially in a circular Kepler
orbit, with constant thrust acceleration in either the tangential (along the
velocity vector} or circumferential (perpendicular to the radius vector
and in the plane of motion) directions. The ratio @ of the thrust accelera-
tion to the gravity acceleration in the initial orbit is assumed to be
small compared to one.

Practical interest in these two problems stems from the fact that
the optimum steering program, to achieve escape from a circular orbit in
minimum time, is closely approximated by the tangential and circumferential
steering programs when o is small, Indeed, Lawdens’9 has shown that the
optimum instantaneous thrust direction lies between the tangential and cir-
cumferential programs. A

The problem of analytically describing the motion with either
tangential or circumferential thrust acceleration is also of considerable
mathematical interest. It is known that the condition for escape from the
point of central attraction occurs in a finite time, The difficulty in
solving this problem stems from the singularity at the instant of escape.
In general, it is necessary to treat one or more of the variables as being
small in order to integrate the equations. The assumption usually breaks
down in the vicinity of escape. A brief review of the past approaches is
given in the following pages.

-21-
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e)

ala (0)

©

a (o)<a< o

a = a(=2)

O

b) a=a (o)

£) a>a ( 2)
FIGURE 6. TOTALITY OF MOTIONS
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Tsien10 in 1953 obtained a crude approximation for the circum-

ferential case by neglecting the second derivative of the radial distance
with respect to time. He found that the ratio P of the radial distance to
its initial value is given by

p = (1 "'a'T)-2 ’

where T is the time in units of the initial orbit period. In addition, the
ratio z of the square of angular momentum to its initial value is equal to

© in his analysis. Tsien also predicted the time to escape:

1/4
S | -agz a) .

E

Benneyll obtained in the tangential case a solution for P and =z
in powers of a with the path length s (normalized on the circumference of
the initial orbit) as the independent parameter. To the first-order he
obtained

p=1+2a (s - sin s), z=1+2Qs,

However, in Section 3 it is shown that to first-order s = 7 in which case

Benney's solutions are
P=1+2a(T ~-s8in T), z=14+2Q7 |

The escape time

1/8 1/4
s =1-Q0 a

E a

predicted by Benney is only slightly smaller than 7_ predicted by Tsien for

E
circumferential thrust.

-23-




Lev:lnA’12 obtained a solution for the circumferential case in
powers of a. To first=-order in @ his results are identical to Benney's.
These solutions are good approximations in the region & T<<l. To extend
this region closer to 1 higher order terms in O must be retained, which is
a weakness in this method. |

Billikl3 hoped to extend the region of good approximation farther
from the original circular orbit in the circumferential case. He used z -1
as a dependent variable and assumed it to remain small compared to 1 over the
range of interest., However, one need only examine Tsiei:'s solution to see
that z - 1 can be even greater than 1 before escape is achieved.

Lass and Lorell5 used the asymptotic method due to Kryloff and
Bogoliuboff to obtain the differential equations for the first approximation
in the circumferential case. If one assumes that the eccentricity of the
instantaneous Kepler ellipse remains small, then the equations obtained by
Lass and Lorell provide

p-z=(-4as)t/?,
where 8 is the polar angle. The advantage of the asymptotic method, which
was used here, over the classical perturbation method invoked by both Benney
and Levin is that an infinite series in powers of & is not required to obtain
accuracy to order a over the entire region (from circular orbit departure
to escape).

_ Zee14 investigated the problem of constant tangential thrust (not constant
thrust acceleration). However, the orbit equation p =p(8), z = z(6) is
the same for both cases; only the time along the orbit is different. He,

too, used an asymptotic method to obtain the solutions

/2

N |

1

1 -2a o) - - -1
3 ¢! . /3 sin 5), z 1-4a0)

-24a




Observe that these results are the same as obtained by Lass and Lorell
except for the decaying sinusoidal oscillation in the expression for x.
However, no consideration was given to the higher harmonics in 6 . Since
these terms can conceivably contribute additional terms of order a , the pre-
ceding expressioas for p and z might be incomplete to order a .

The following pages include the derivations of the complete first-
order solution for p and z in terms of 6 for both the tangential and circum-
ferential cases, However, the difficulty of predicting the time of escape

to order @ has not been resolved, and further analysis is required in this

area.

2.3.1 EQUATIONS OF MOTION
A particle P is moving in a circular Kepler orbit about the point

of central attraction 0. At time t = 0 a constant thrust acceleration f is
applied in either the tangential or circumferential direction. The equations
of motion will be so formulated that when £ = 0 they are linearized and
integrable.

The position of P is defined with respect to O by the plane polar
coordinates r and O (Figure 7). For tangential thrust f lies along § and for
circumferential thrust £ lies along r8. The unit of mass is selected to
make the gravity constant unity. The instantaneous energy and angular momen=-
tun are then given by

$2
s -

~

(1]
N =
" =

respectively. The time rates of change of E and h are

tangential: E=f§, h= f%
circunferential: E= f%, h = fr

-25-




FIGURE 7. TANGENTIAL AND CIRCUMFERENTIAL THRUST GEOMETRY

To obtain the desired forms we replace r by u-1

and treat © rather than t as

the independent parameter., Using the operator equation

d .24
at ( ) = gE ()
we obtain
du
r=-hv, V=95
2_.2 w2 2,2 2
s+ == h“(v" + u")
T
. 2 dE h2
EEhu 30 E(u,v,h)—z—(v +u’) - u,

-26-




Thus ',
\’ 2 2
tangential: g—g - £ Vz tu g_% - £
“ huz v2 + u2
circumferential: g—E = -‘-fl- , g% = ___..f3

The next step is to perform the differentiation

dE _ OF du _ OE dv . OE dh
d6” QJu d@ T Jv a8 T 3n db

and obtain the orbit equation for the two cases. It is convenient at this

point to introduce w = h2. The complete set of equations is given below.

. du _ dv =1
tangential: 30 - v, 30 + u = v
dw _ 2£ at _ 1
6 T
u2 v2+u2 uZ'Jw
du _ v, _1_fv
circumferential: a =v , de+u—-w 3
dw _2f dr 1
d6 3’ d6
u uz"‘w

The initial conditions (at 6 = 0) for a circular orbit are

-1
u(0) = U, v(@) =0, w(0) = ug
The equations for u, v,and w are independent of t,and hence represent a

complete third-order system., Dividing each equation by u and introducing

the nondimensional parameters: 27




sz =-‘:— Z = wu a:-—g—-
ua y=3u o o °? 2
o o u
o
we have
tangential:
dx dy =1 dz _ 20 @n
=Y » Ft*"z > 36
2 2
x y +x
circumferential:
dx d 1 a dz _2a
30°7Y §%+x=;-—§ s I3 - (28)
zZX X
With 7 = uo?'/2 t, the time equation can also be written in a nondimensional
form

d
2V

Then if one can obtain the solutions x = x(6) and z = z(6), T can be

reduced to the qﬁadrature

+ constant

T=f do
<26y Vz(8)

2.3.2 _FIRST APPROXIMATION
When @ = 0, equations (27) and (28) have solutions of the form
+ Hcos(6-B) , y=-psin(6-B), z=7

x:

Ll

-928-

(29)

(30)



where M, B and Y are constants of integration. The method of Kryloff and
Bogoliubc:ff15 will now be applied to obtain asymptotic solutiomns to
equations (27) and (28) when a # 0 but is sufficiently small. When a#0,
regard equation (30) as a set of transformation equations to the new variables
4, B andy.

(1) Tangential Acceleratiom

In terms of the new variables equation (27) becomes

du a8 =l &
decosd)-l-ﬂdes:md) 72d9
—ggsimﬁ +#g%cos¢=0

ay _ 2 ay’

dé

f o
(1+,U'Ycos¢)2‘\/1+ 2pycos ¢ + ¥

where ¢ = 6 - B These equations are intractable in their present form.
However, if the assumption is made that MY <<1l over the region of interest,
an asymptotic solution can be obtained. Later, a verification will be given
that for a >0, the quantity UY decays from an initial amplitude of order
@ to zero as the condition for escape is approached. The equations can,

therefore, be written as,
%%= 2ay(1 - 34Ycos ¢) cos ¢

%%= Za% ( -~ 34Ycosp) sin ¢ : > ‘(31)

(—di%= 2“73 (1 - 3HYcos @)

The functions on the right-hand side of equation (29) are next

represented by a trigonometric series with

-29.



f1(1¢) = (1-3 UY cosP) cos § = bo(l) + Z (bn(l) cos nd + an(l) sin n¢) 3
n=]
f2(¢) = (-3 Ycos¢) sind = bo(z) + Z (bn(z) cos n b+ an(z) sin n 9) ?(32)
n=1
f3(¢) = (1-3 4Y cos @) = bo(3) +Z (bn(3) cos n ¢+ an(B) sin n ¢) /
n=1
where
2m 2T .
bo(i) - ﬁ— £,(8) aé bn(i) = %—f £,(8) cos n® d¢
o )
27 (33)
2 @ - %—f £() sinn®dd  1=1,2,3
o

Since @ is small, u, B and ¥ will be slowly changing functions of
6. The first approximations are obtained by setting

B = F ’ ﬁ = F ’ Y= (34)
where ;7, B- and ?are determined by neglecting the higher harmonics in

@)

over the interval ¢ = 0 to 2., The differential equations for the first

equations (32, retaining only bo and holding them (H,B,.’?) constant

approximation are

n
- - 2
%-%— =—%‘_L f(l-3ﬁ cos ¢) cos pdd =-3aﬁ\
)
_ 2m
g—é- +—a71—f (1 -3 KYcos ®) sinddd =0 }(35)
i
o
_ _3 27
g——=—:l-j(l-3ﬁcos¢)d¢=2a:‘73 7
o
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where ¢ = 6 - E. The last equation has the solution

¥ =qQ-s4a6)/? (36)

Combining the first and last equations in (35) and integrating one gets

=gy G

where K is the constant of integration.

(2) Circumferential Acceleration

Solutions similar to equations (36) and (37) can be obtained

for the circumferential case. The differential equations

\
g—% = 2 ay[(l - 3 py cos® cosp - -‘;—7 s:'m2¢] =2 ay gl(¢)

dB_2aY 1 _ 347 cosd) sind+ LL sin ¢ cos ¢ = 2 @) $(38>
g-%= 2 a,'yB(l - 3 uy cos) 2ay 3f3(¢) )

are obtained by substituting equation (30) into equation (28) and by dropping

terms of order (a'y)z. The third equation in (38) is the same as in the
tangential case,

As before, the right-hand sides are represented by trigonometric
series of the form in equation (31) except that g1(¢) replaces f1(¢) and
g, @) replaces f2 (@). For the first approximation

- _ om .
=7 e
g%= %L [(1 - 3 IYycosd) sind + 'E'Zl sin ¢ cosd)] dp =0 ch)
~ 2
o ay _,
ans- Tj; (1 -3 KMYcos®) dop = 2f7y J
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from which
Y =-@-4ae)t? (40)
B =gyl | 1)

2.3.3 .IMPROVED FIRST APPROXIMATION

In obtainingﬁ s E and 7 as functions of 6 the higher harmonics were
ignored in the series equations (32). The first-order effect 6f these terms
may be determined from the improved solutions (improved over equations (34))

U = Zl-+ 2 a7y Z-r]f (bn(l) sinn¢ - an(l) cos n )
n=1

B =F+ _ZTG-'Y_ Z ;!1' (bn(z) sinn¢ - an(z) cos n ¢) (42)
n=1
n=1

1) (1)

where setting @ = [, B =P and Y = Y in the coefficients b and a .

(1) Tangential Acceleration

In this case

n

n
b(1)=-:,l-ff (Q-3H4Ycos®) cosd cosn @ do
o

b M =1 b ) = - 3EY R others = 0
1 ? n 2
2T

an(l)=:,]*r (1-3Wcos¢) cos P sinndp ddp =0
027r

bn(2)=7}-rf (1 -30Ycos®) sind cos np d¢ =0
027r. '

a @ =%-T (A -3UYcos®) sin® sinnd 4@

n o
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al(z) =1 , a2(2) = - 3‘; R others = 0
2m

b(3)=%'T (1 -3 Klcos®) cosnd do¢

n o

b1(3) = - 3-17')-( R others = 0
2T —

a @ -2 [T -3%cosg) sinnd d¢ =0
o

and equations(42) become

\
M=H+ 2 a?(sin‘b-'s—%y—'Sin 29)
ﬁ=3f2a%—(- cos¢~i—3>lzy cos 2¢) ' > (43)
'Y=§(1-6al-1—7- 3sin¢) J

When equations (43) and (37) are substituted into the equation for x in

(30), and when terms of order a,2 are dropped, the equation for x becomes

x
n
< i+

[1 + ry-l;/Z cos (6 --ﬁ_)] (44)

Using the relation

<

d
d

=2ay ,

()

then the derivative of equation (44) with respect to O is
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d - =1/2 K
%=-2#’Y~6#K"// cos (6 -B) -Wsin(a'm-

The constants K and 3 are determined from the initial conditions

dx

x=1 ,55=0 , Y=1 at6=0

Finding K = 2a and B in 7/2, equation (44) becomes

x =% (4 —2— sing) (45)
Y ~1/2
Y
The final results are then
- /
x=%(1+zifé sing) , z= (1 -4a8) 12 (46)

which is the same as obtained by Zeeu‘. However, the present analysis has
confirmed that the higher harmonics do generate first order terms in @ but
that these terms cancel.

This analysis was based on the assumption that HMY<<1l., The
correctness may be seen from

/4

TY=2a( - 4a0)’ @7

which is <1 for a<< 1 and which tends to zero as O approaches 4—]&— for

positive values of a.

(2) Circumferential Acceleration

In place of equations in (43), the improved solutions for

the circumferential case become:

-3




\
B=p+2aY(sind- 5‘;7 sin 2 9)
B=PB+ L%%(-cos¢+§—%lcos 2¢) & (48)
Y=¥ @ -6aHr> sind)

J

where ® = 6 = B. The resulting first-order solution is found to be

2a
z3/4

x"‘%(l* sin) , z=( -4a6)" M2 (49)

This solution differs from equation in (46) for the tangential case only in
the decaying sinusoidal oscillation of order a in x. Hence, the difference
in tangential and circumferential thrust is small for smalla.

In this case the stipulation that Uy <<1 is confirmed by

3/8

EY=2a( -4ab) (50)

2.3.4 TIME EQUATION

Having determined x and z as functions of 6 , for the tangential
and circumferential cases, it is possible to integrate the time expressiomn,
equation (29), by elementary functions. For convenience, equation (29) is

rewritten as

T=f d6 + constant e (51)
x> (6)1[2(6) |

When the time expression is evaluated for the tangential case, using the
equations in (46), the resulting integral becomes

T = [Q-406) %46 - 4a [sin6 (1-408) M 2a0+ 120 Y s1n?0(1-4a0) 440

4+ constant
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Upon integrating this expression and evaluating the constant of integration
with the initial conditions T = 0, 6 = 0, the complete first-order solution
becomes

T= é [ 1-(-4a0) /%]

4ha (1-cosB) + 0(a?) . (52)
When the time expression is evaluated for the circumferential case,

using the equation in (49), the resulting integral becomes

T= [ (1-4a 6) - 4afsin 6 (1-406) /8 46+12 a ¥ sin6 a6

+ constant,

Upon integrating this expression and evaluating the constant of integration
with the initial conditions T= 0, 6= 0, the complete first-order solution

becomes

T2t 0-0-4a0)"%] -4a(t-cos 6) + 0(a?) . (53)
Equations (52) and (53) show that, to the first order, the time expressions
for the tangential and circumferential cases are the same. If a second-

order theory were carried out, the second-order part of equations (52) and
(53) would be different.
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SECTION 3

PERTURBATION SOLUTIONS =
OF THE EQUATIONS OF MOTION

The intent of this investigation has been to improve the ana-
lytical representation of low-thrust trajectories through perturbation
solutions to the system equations of motion. Of primary interest is the
application of the perturbation solutions to orbit transfer problems. By
making use of these solutions, certain optimization problems of interest
may be treated within the realm of simple optimization theory and improved

numerical computation techniques can be developed.

3.1 PERTURBATION SOLUTIONS STARTING FROM A CIRCULAR ORBIT

This subsection summarizes the perturbation theory, which includes
a complete second-order theory for the motion of a vehicle where the thrust
vector is maintained at a constant angle with respect to the radius vector.
The following pages will include the system equations, a first-order solution
for tangential thrusting in order to illustrate the basic methodology, and
then a second-order theory development for thrust in an arbitrary direction.
A portion of this subsection will be devoted to discussing the numerical results
for representative low-thrust trajectories,and also the application of the

theory to orbit transfer problems using an energy/momentum approach.,
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3.1.1  EQUATIONS OF MOTION
Consider the problem of finding perturbation solutions of the differ-
ential equations of motion of a vehicle moving under low thrust. The equations

of motion are

a2 v? 1 o

—%— - = + —5 =acos ¥ ' (54)
dTt P p

% ——-dq’_ (PV) = asiny, (55)

The notation is that of E. Lev:i.n4 where Vv = p ‘-dig , U<a <<}, and

P, 6, T are dimensionless position and time variables (Bee Figure 8).

FIGURE 8. GENERAL LOW-THRUST GEOMETRY
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The constants of integration are determined according to the initial condi-
tions, p = 1, F.) =0, T-= O,é =1,6 = 0, and s = 0, for the departure from

a circular orbit.

3.1.2 - THRUST IN TANGENTIAL -DIRECTION

v
Consider the case of tangential acceleration: tan ¥ = = . Then
the equations of motion, (54) and (55), become P
2, 2 .
p v ap
5 - + == = (6)
1 d av
g 3T (PV) = . E2))

NFRE

With (ds)2 = (dp)2 + pZ(dG)z, the dimensionless arc length, and V

o
D

il
e}

[
~

the velocity becomes

2 2
D - &5 + V=, (58)

From Levi.nh, the rate of change of the instantaneous energy E is
E= a.bcos ¥+ av siny. , (59)
For the tangential case, equation (59) becomes

E = ab(g) + av(%) = av, (60)

Now, changing to the independent variable, s, we obtain
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E= as +E_ . ' (61)

Expressing equation (61) in terms of the speed V for an initially circular
orbit, the first integral obtained by Benneyll is

2
V2 = (E =

3 +2as =1, : ' (62)

N

Thus equation (57) can be written as

d(PV) adT adT ads ads '
PV & 2 2,6, ©3)
\/ pT+ v TS e
Integrating equation (63), the angular momeatum becomes
ds _
h= pVv = exp a.f E——_—-‘ . (64)
: =+ 2as-1
P
x x2
With the approximation e =1+ x + =5 for small x, equation (64) reduces
to
a’ 2
h= pv =1l+ag(s) + 58 (s) , ‘ (65)
where g(s) = f?——g-s—-— .

5+ 2a s=1

Similarly, equation (56) can be written as

2 » ‘
d p v 1 do

- + =Q . (66)
d'rz P p2 ds :
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The following will show that equations (56) and (57) can be brought into the

form

dzu ds :
e = exp -2 Somt } @7
d .
ar 1 ds |
e’ = o —25
de~ 2 exp { f2u+2 as-1 } (68)
1 . ) R
where u = 7 - Setting P = g 10 equation (64) yields
_p2 _p240_ B _ asls) _ 1 d6_

which is equation (68). Setting £ = %’in equation (56) yields

1l duw d6_ _, du d% __,2 2 du_, 2dhdu
L2 d6 dT do °’ au 2 a6 db *

Substituting these derivatives into aquation (66) the result is

2
d“u 1 1[
ad 2 B

: n-ln-
[11=2
Sl

_a dp
+ 5 ds]. , (70)
hu

For the tangential case, the following analysis will verify that the quantity
inside the bracket is zero. From equations (68), (69), and (62), it follows
that

=1
1]
|9

dh ;
7= — = —— === 6=hu 30 ©F

Ne
[+
e
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Also dp/ds can be written as 40 _ _ 1 du db .
ds u, do ds
2 2
d6 _u dh_hu
From equation (57) ds "o ar- &
_ _hadu
so that ds 3 .

Thus the quantity inside the bracket in equation (70) is zero, substantiating
equation (67). Regarding the right side of equation (67) as a function of 6,
the equation is now a nonhomogeneocus linear differential equation with
constant coefficients. The complete solution is obtainable by variation of

parameters in the form

u=Acos 6+ B sinf -~ % e:le exp{iG-Za,g(s}}d6+ :—2[- eiefexp{ie-Zag(si} (71)

where 1 =V -1, A and B are arbitrary constants and g(s) =f-_—_2u+2‘(ixss-1

Integrating equation (71) by parts, the result is
u=Acos 8 +Bsinf + exp {(-2a g(s)}+ 0(a 2) 72)

for a first-order solution. To obtain a more explicit form for the particular

integral, differentiate

u = exp {-20. g(s)}:exp -zafﬁ'z;dass—-i- (73)

with respect to s to obtain
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du _ -2Q ds ?_ =20y
ds ~ Zwrzas1 P 2%/53 as-1f’ 2ur2 as-1 74
which can be arranged as
ds+sd=-1—du-l du = d(us) (5)
u u = 5o o U du = d(us :
u u2
which has the solution (us) = T -2T+ cys OF since u = 1 when s = 0,

Using equation (76) in equation (68) and knowing that

2 1l .d 2
df = Yu© - = (a—;l) ds , the result is 0 s+ 0(@),
u

and evaluating the constants of integration in equation (72) according to
the initial conditions, the constants are A=0and B=2Q, so that

equation (72) becomes

u=1-2a(s-sins)+0(a2). an
Since p = ‘-];-, equation (77) is in agreement with Benney's result,
2
P=1+20a( - sin s) + 0(a”) ., (78)

Now writing equation (68) and neglecting terms of ordera.z,

d7 =[1-2a( - sin 8)172 @ -as) 46 + 0(a?d) (79)

]

[1+aB3s -4 sins)l a0 + 0¢a?dy .

0
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2
2 1 ,du
Using dO = -\/ u - :2' (Es‘) ds , we get

d6 =[1-2a(s - sin )] ds + 0(a 2) (80)

Equation (79) can now be integrated to obtain

T-C =f[1 +a(Gs - 4s8ins)] [1 -2a(s - sin s)] ds + 0(a.2)
2 ’ 2
=s+a.(s—2-+2cos s) + 0(a”) . (81)

#

When 7= 0, s = 0 so that C = - 2a and equation (8l) can be written as

2
T=s+a(;—-4sin2 -zs-)+0(a2) . (82)

Equations (78) and (82) constitute a complete first-order solution of
equations (67) and (68) in the case of tangential acceleration. Analogously,

a second-order solution can be derived.

3.1.3 THRUST IN ARBITRARY DIRECTION .
Now consider the more general case of thrusting with a constant

orientation angle ¥. The equations of motion are of the form of equations

(54) and (55). Writing equation (59) in a different form, we have

é=v§§=acos (¢-4/)'\/bz+v2 (83)

or

. (84)



i
1
1
|
|
i
R |
|
|
I
|
]
|
1
|
|
N |
t

Chopsiug C= =~ -;- to satisfy initial conditions, p= 1, s = 0,7 = 0, then
equation (84) becomes the first integral

v2=§2=%+ 2af(s) - 1 (85)

where £(s) = [ cos ($-¥) ds = s sin¥ + O(a).

In the same way that equation (64) was obtained, the angular momentum

becomes
h= pV = exP{af —'Tsji—‘t;—ﬂ ds} - (86)

Equation (70) will now become

2 7]

A . Al g q‘{

u;+“=-12't11[§53‘5+ °°§ | - ®7)
a6 h hu -

2
1 46 dh _ asiny \/ 4P 2
Since h = ——u2 37 and 30" v (E) +p" ,

equation (87) becomes

2 2
da, _1 _4a |sin¥ du "\/ 4P 2 ds
@ T2 TW | dG-V(d * P xcos | %)

Hence, equations (88) and (86) can be written as

(89)



(=%

&%= _12_ exp{ afsin'//ds } . (90)

u

The complete solution of equation (89) is obtainable by variation of parameters,

analogously to equation (71), as

< & con0+ B sno- & ¥ [a7107 (0) o+ £ 010

3 Fl(e) dg (91)

where

. 2
— _ asiny ds _Q 1 d 2 du
F1(9) exPp { 2[ vV db d6 V {u siny (Eg) te do

- asiny ds
+ cos ¥ d9 exp{ f vv a0 de
X x2 -
Using the approximation e =1 + x + - for small x, a first-order expression

for equation (91) becomes
= A cos 8 + B sing --;'eiefe-ieli‘z(e) do + -21; e-iefeier(e) dg (92)

=1 - siny ds .. _ & ds
where F2(6) 1-2af iy de vcoszp + 0(a ) .

Upon integrating equation (92) and evaluating the constants of integrationm,

du

A and B, according to the initial conditions 6= 0, u=1, &= a0 = 0, and

letting ¥ = 'Q(Io, a constant, the result is

u=1-af[2siny_ (6-sind)+ cosy (1 -cosg) ] + 0(a ) (93)

-46=



p=1+ a2 sinzl/o (6- sinf) + cos ’lﬁo (1 -cos8) ] + 0(‘12). (94)
Using equation (90) it follows that
T =9+a[sin‘4/o(:-;- 92 + 4 cos0 - 4) + 2 cos ‘(Po (0 - sinf) ] % 0(a2).(95)

Since (ds)2 = (d)O)2 + pz (de)z, then ds = Pd6 + O(az) so that by
equation (94)

2

s=e+a[sim//° (67 + 2 cosB-2) + cos'gbo (6-sinB) ] + O(az) . (96)

In general, the basic solution to equations (54) and (55) can be written in

any of the two explicit forms.

p(8), T=1(HO) ¢2))

©
]

pP(T), 0=06(T) (98)

Kol
1

In the previous pages it has been shown that equations (94) and (95) take
the form of (97). From equations (94) and (95) the form of (98) is obtained,

namely,
p=1+afl2 sin?llo (T-38inT) + cos Vﬁo (1 -cosT) + O(az)(99)
ahd

2

8 =1 - a[sin 'gl/o(’;-"" + 4 cosT -4) + 2 cos Wo (T -8inT) 1+ 0(a 2).(100)

Other relations involving s are
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g =s - a[sin Kl/o(s2 + 2 cos s - 2) + cos ‘{00(3 - sin s) ] + 0(a 2), (101)
p =1+ a[2 sin 'lﬁo(s - sin s8) ¥ cos 7I/o(l - cOs s)] + O(a 2),, (102)
T = s + &[sin Tllo (-;'- 52 £ 2 cos s -2) £ cos "l’o(s - sin s)] + O(az). (103)

The development of second-order expressions in the two explicit forms as
noted by (97) and (98) will now be obtained. From earlier first-order results

the following‘ axpressions are obtained:

u=1-af2 sin?llo(e- sin 8) + cosz[/o(l -cosfB)] + 0(a 2)

da

8 =a [- 2 sin ?//0(1 - cos 8) - cos 31/051“9] + O(az)

1 +a[2 sin 1[/0(9- sin 0) + cos d/o(l -cos 8)] +0(a 2)

©
il

ds
dé

+ Oga 2)

n.’c-
@i

= 1+ a[sin ¢°(39 -4 sinf) + 2 cos wo(l ~cos0)] + O(az)

v=1 -a[sin?//o( 0 29 sin 8) + cos 7//0(1 -cosB)] + 0((1.2)
=v+o(ad).

Upon substituting these expressions into equation (91) and integrating and

evaluating the constants of integration, A and B, according to the initial

conditions, the following is obtained:
u=1+af cos’gl/o(cos 6-1) -2 sin?[/o( - sinB)] (104)
2 . 2. 2
+ & [sinky (- 260° - 76 sin9 - 18 cos O + 18)
)

+ cos? zllo(esine + 2 cosB -2)

+ sin ;00 cos wo(- 86 -%Qcos e + 2'2-7- sin8) ] + O(a,3)
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Since (1 + ax + a.zy)-1 =1-ax+ (X.Z(X2 -y + 0(a3) equation (104) can

be written as
e =1+alcos zpo(l - cos €) + 2 sin ?Po( 6 - sin 8)1] (105)
2 . 2 2 . 2
+ a [sin Y, (66" + 4 sin"0 -6sinb + 18 cos 6 - 18)
2 2
+ cos ‘l[/o(cos 8 -0sin 6 - 4 cos 6 + 3)
3 19 . . 3
+ sin'(//o cos 11/0(129 ¥ -5_-9 cos 0 - = sin® + 4 sinBcosB)}F 0(a”).

Upon substituting equation (100) into equation (105) p is obtained in terms of

T , namely,
p=1+af[cos wo(l -cosT) + 2 sinzpo( T - sinT) ] (106)

2

+ az[sin2¢0(3T +37'2cosT+5coszT + 6cos T+ 27T sinT- 11)

. 11 3 .2 . 19 _.
+s1n1[/ocos¢°(8T+2Tcos'T 2 T sinT -~7sin 7T
-4 sinTcos T) + si.n2 T -3 sin T -4 cos T+ 4] + 0(0.3).
We obtain 7 in terms of O from equation (90)
T=0+al[2 coszpc',(e - 3in @) + sin z[/o (% 92+4cose-4)] ‘ (107)
2 . 2 7 .3 .
+ a [sin v, (*2-9 + 24 sin O + 69co3 6 - 6 sin Ocos O - 24 0)
2 3 . 17
+ cos wo(Z Bcos 8+ 12 sinB + = sinBcos 6 + 79)

2

+ sin zpo cos gl/o(?:g- 92 + 37 cos 6 + 6 sin 6 -6 :os2 g - 31)] +(a.3).
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From equation (107) and using equation (100), 6 is obtained in terms of T
. 3.2
6 = T+a[sin ‘t//o(- 5 T -4 cosT+ 4) - 2 cos ?Po( T - sinT) (108)
l)
+ (lz[s:i.nzil/o("'3 -8sinT+ 6T cosT =67 sinT =~ 10 sinTcos T
2 5 9
+ 12T ) + cos ‘lpo(8 sin T -6TcosT+EsinTcos T-ET)
5 .2 . 2
+ sin‘tpo cos 7110(- -2-1' 2l cos T - 15TsinT - 10 cos“ 7T
2 3
=3 T cosT+31) +0(a)
There is now enough information available to obtain energy and momentum
expressions. Using equation (84), (85), and (86), the energy and momentum
expressions become
E= - -l--r— aTsiny : (109)
2 o A o

+ a.2 [sin2 ‘l[lo(- -;-'1'2 -~ cos T+ 1) £ sin 7110 cos lllo('T- sin T

+ 8sin T cosT) - cos T+1] + 0(a3)

e
il

1+ aTsin + a,2 s:!.n:Z ('T2 + 2cos T - 2) ’ (110)
+ sin V/o cos ’Wo( T -sinT) ]+ 0@ 3)

Using the energy and momentum equations, the following expression is derived

for the eccentricity of the instantaneous Kepler ellipse:

2 1+2Eh2

[
]

e’ = a2 [6 sin2 ‘ql/o(l - cosT) + 16 sin 7110 cos 7I/o sin Tcos T - (111)

+2Q -cosT) ] + 0(a3)
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The previously developed equations constitute second-order solutions to
equations (54) and (55) for 0<a< <1, 'gl/o a constant, and 6,7, and s not
too large.
3.1.4 NUMERICAL RESULTS

Figure 9 shows representative low-thrust trajectories produced by
the second-order perturbation theory, with a constant thrust acceleration
of a= 0.01 for four specific thrust angles. The four thrust angle values
are shown, and the values of the dimensionless time parameter 7 are indicated.
The radial thrusting case, ¢° = 00, is seen to exhibit the oscillatory
behavior described in Section 2.1. Also, the apsidal angle is seen to be
approximately ( 1 +a) 7, which is also apparent from our numerical results,

The circumferential thrusting case,‘Wo = 900, is seen to exhibit the secular

.increase in radius as predicted in Section 2.3. However, the secular increase

shown in Figure 9 is slightly modified by the seéond—order terms.,

The accuracy of the perturbation solutions for arbitrary steering
angles cannot be determined from the numerical results shown in Figure 9.
Since there are no exact solutions for arbitrary steering angles, we must
take a closer look at the underlying assumption upon which our perturbation
theory is based. The assumption is that 0 <2< <1l. With this assumption
on , the binomial, exponential, and trigonometric series may be used for
convenience in the derivation of the perturbation solutions. When Q is
sufficiently small, these infinite series converge rather quickly. Therefore,
since our perturbation solutions are only infinite series developed through
the second order, the accuracy will increase as Q becomes smallér. This
assumption directly limits the size of the independent variable, either
T or 6, for reasonable accuracy. In general, as O approaches zero, the
independent variable can be made larger.

The exact solution for the special case when'¢o = 0° is known in
terms of elliptic integrals, as noted in Section 2.1. When the elliptic
integrals were evaluated and compared with the perturbation theory results,
it was found at a given value of pat 7 = Mand @ = 0,01, the error was less

than 1% in7 . However, for a <0.001, the error should be significantly less,
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and the perturbation solutions would probably give accurate results for one
revolution or more. A procedure for improving the accuracy of multiple
revolution trjaectories is given in Section 3.2.2.
3.1.5 ORBIT TRANSFER APPLICATIOH

The perturbation theory may be applied almost directly to the problem
of transfer from one circular orbit to another. For transfers involving an
initial thrusting phase on departure from a circular orbit followed by a
coasting phase and a subsequent thrusting phase to establish the final cir-
cular orbit, it is only necessary to choose the thrusting angles and thrust
durations so that the energy and momentum values at the beginning and end

of the coasting phase are identical. Figure 10 illustrates a sample transfer.

Final Thrusting Phase

Coasting Phase
B, 7B

hl = h2

Initial Thrusting Phase

FIGURE 10. ORBIT TRANSFER GEOMETRY
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The final boundary condition of the second thrusting phase may be satisfied
by interpreting it as an initial condition and then considering the motion
in negative time. Because the various equations were non-dimensionalized
with regard to the initial orbit, it is necessary to examine the conversion
factors between quantities measured in the Py = 1 system and the p £ = 1

: P
system., Denoting the Pg quantities by primes, arnd defining K = b—ﬁ- , the

i
conversion factors are:

(pi = 1 quantity) x conv. factor (Pf = 1 quantity)

E K E'
h K'1/2 h t
2
a K- at
P (length) K-l P'(length)
; 312 5
p g1/2 o'

When these conversion factors are utilized, the non-dimensional equations are

sufficient to define the transfer maneuver.
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3.2 SOME GENERALIZATIONS OF THE PERTURBATION THEORY
3.2.1 -EXTENSION TO ELLIPTICAL ORBIT STARTING CONDITIONS

Since the development of the perturbation theory is complete through
second-order for circular orbit starting conditions, it is quite natural to
extend the theory to accept elliptical orBit starting conditions. To
accomplish this without recourse to numerical metheds or a completely
different analytical approach, the following assumptioms were made with
regard to the starting conditionms:

p = Po =1+ Ap Ap= 0(a)
= 6 =1+ AB = 0(a)
p= P, P, =0(a) .

These conditions insure that the starting orbit has an eccentricity
no larger than order &, The above initial conditioms, along with 6= 90 =0
and T = To = 0, can be used tore=valuate the constants of integration re-
quired in the perturbation analysis. In view of thc similarity of this
analysis to that of the preceding subsection, and to avoid undue algebraic
complexity, only the first-order result has been derived. The first-order

results are as follows:

P=1+ Ap (4-3 cosT) + 2 Aé(l-cosT)-l—i)o sin T - (Q12)
+ al 2 sinz//o (T -sinT ) + cos ‘t[/o (Q-cosT7)] + 0(a 2)

O=7-68p(T-sinT) ~DO@BT =4 sinT) -2p_ (l-cos T)  (113)
- af sin 1//0 (-:% 1'2+ 4 cos T -4) + 2 cos 1[/0 (6 -sinb) ]+ 0(0.2)

E=--;'-+ 20p + A6+ aT sind/o-t- O(az) (114)

h=1+20p+A0+aTsiny_+ oca?dy . (115)

By equation (113), T = 6+ 0(), which implies that equations (112), (114),
and (115) can be written in terms of 6 by just substituting 6 for 7.
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3.2.2 ‘TRAJECTORIES INVOLVING MULTIPLE REVOLUTIONS
In a so-called strong gravitational field (thrust acceleration

extremely small compared to gravitational acceleration) trajectories of
interest may involve several revolutions about the central body. Direct
application of the perturbation theory of subsection 3.1 would result in
significant error accumulation for such long transfer times, A more sensible
approach would be to re-establish the circular reference orbit at each
revolution. vThis technique,having an analog in the rectification process
in the Encke method of special perturbation theory, should sharply reduce
the overall error accumulation. It will be shown that by appropriately
choosing the time of rectification, the first-order extension to elliptical
orbit starting conditions provides the information necessary for performing
a rectification which is consistent to the second-order. Differentiating

equations (112) and (113) gives

p=3A PsinT + ZAé sin7T + F"o cosT (116)
+ af[2 sin ?//o (l-cosT ) + cos 11/0 sinT ]+ 0(a 2),

6=1-6A P (Q=cos T) - A é(3—4 cosT) + 2 F.)o sinT (117)
- afsin ?//o (37 =4 sinT) + 2 cos 1[/0 (l-cosT ) +0 (a 2).

Assume that the initial starting conditions are such that Ap, A8, and bo

are of order a2 or smaller., Next consider equations (116) and '(117) for

T =2T:
f@Em = 0 + 0@, (118)
b@my = 1 - @ 67msiny + 0(a?) . (119)
From equation (112)
p@2m) = 1 +a47rsin¢0+ O(az) . (120)
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Next compare é (2 1) with the circular orbit value éco for Pp= PQ2T).

S 1 _ 1

co —[p(2 7T)]3/2 B | ) 3/2
[1+ asmsiny + (o )]

b =1- ab msiny _+ 0¢a? (121)
From equations (118), (119), and (120) it is seen that conditions at T = 27
are those of a circular orbit to order a. Since the deviations from a circular
orbit condition are of order az, equations (112), (113), (114) and (115), along
with the terms of order a,z from subsection 3.1, are sufficient for the multiple
revolution case. Higher order terms in A 6 and bo are not required if the
ractification occurs at 7 = 27 | gince the coefficients of these terms are
already of order az.

A step by step description of a multiple revolution trajectory

computation follows:

(1) Using equations (112), (113), (114) and (115) with second-order
terms included, compute the time histories to 7 = 2 . Remember that Ap, éo’
and bo must initially be of order a.z.

(2) Using the conversion factors contained in 3.1.5, convert the

quantities to a system with a reference orbit of radius 0 = p(27). That is,
e’
T, p@m),pQm),0(2m) —»¥, 1,p70),6 ©).

(3) Establish the initial deviations from the new reference orbit.

AD = By -1
5= PO
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(4) Again using equations (112, (119, (114), and (115), compute
the time histories to T'= 2 T, For output purposes, it may be ‘desirable to
reconvert the results to the original system of units.

(5) Repeat the above steps until the desired terminal comndition is

reached,

The accuracy obtained using this technique will depend mainly upon
the value of ¢ employed. For extremely small @ , it may be satisfactory to
defer rectification to T = 2n7 where n>1l., It is again emphasized that the
above procedure is entirely consistent to order az.

3.2.3 -SOLUTIONS WITH VARIABLE THRUST ACCELERATION

Using a procedure similar to that of Section 3.2.1, it is possible
to account for time variations in the thrust acceleration parameter &, While
the solution could easily be obtained for any éort of time variation, the
problem of most significance involves a linear change in & with time. This
would correspond to a vehicle with constant thrust whose mass decreases at
a constant rate. Let & of the preceding subsections be defined as a'o’ then
consider a to he given by a = a + &7, where & is sufficiently small so
that AT is no larger than order a - Let 0p(T),0p(T), 66(T), and 58(T)
define the change in position and velocity resulting from the time variant
portion of the thrust acceleration. First-order perturbation solutions for

these quantities are

a [coszllo(’r- sinT ) + s:i.n'gl/o(‘r2 + 2cosT =2)]+ O(OLOZ), (122)

op =
8p = a [sin Y, - cosT) + singy (27 - 2 sinT) 1 + o(a 02)_, (123)
73 2.1
56 =& [sinzpo(lvr- 4 sinT - —=) + cosy (2 - 2 cosT - 7T )]
2
+0(a "), (124)
88 = a&f sin?//°(4 -4 cosT - §—27--) + cos¢0(2 sin T - 27)] + O(aoz).
(125)
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These perturbative terms, when added to the previously derived
first-order solutions for the a, contribution (subsections 3.1.3, 3.2.l, and
3.2.2) yield a first-order solution for the linear time-varying thrust
acceleration case. It should be pointed out that if @ is very small so that
aT is of order<1°2 for T values of interést, the above equations represent
a second-order contribution, and may be used in conjunction with the previously

derived second-order theory (subsection 3.1.3).
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SECTION 4

CONCLUSIONS

The preceding investigations have considered the in-plane tra-
jectories resulting from the application of a small thrust to an object in
an inverse square central force field. -

The analytical solutions for thrust programs involving radial,
normal, circumferential, and tangential thrusting were reviewed and extended.
For the radial thrusting case, it was found that when l al<<1/8, the radius
vector is periodic between T, and (1 + ZQDro. The frequency is (1 + 3a)n°
and apsidal angle is (1 + @), where o is the mean motion of the initial
circular orbit.

For the normal thrusting case, the totality of motions for a
particle initially in a circular Kepler orbit was determined. it was found
that the orbits lie in a ring bounded by two circles, the first with radius
equal to the radius of the initial Kepler orbit and the second Qith radius
dependent on the normal force. The second circle lies outside the first
circle when the normal force is outward and lies inside when the normal
force is inward. The radius of the second circle cannot exceed twice the
radius of the first circle and is reached only when the normal force is
0.230 times the gravity force at the initial radius. The point of central

attraction is reached only when the normal force is 2.809 times the gravity
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force of the initial radius. The orbit path oscillates periodically between
the two circles. However, the orbits are not in general periodic since

they do not close. When the magnitude of the normal force is small, the
orbits are direct, while when the force is large, the orbits are direct
near the first circle and retrograde near the second circle.

For the tangential and circumferential thrust case, the complete
first-order solutions were derived using the asymptotic method due to Kryloff
and Bogoliuboff. The similarity of th= derived first-order expressions for
the radius vector to those deternmined by Benney, using the perturbation
approach, indicates that Benney's monotonic term is a secular term ratﬁer
than the initial term of an infinite series representing a periodic function.
This distinction is not evident from a perturbation analysis.

The investigation has also yielded perturbation solutions of the
differential equations of motion of a vehicle moving under low thrust.
Second-order solutions were derived for a vehicle departing from a circular
orbit. Also first-order solutions are given for a vehicle departing from
an elliptical orbit with small eccentricity. The thrust vector is assumed
to form an arbitrary, but constant, angle with the radius vector. Th=2
solutions are accurate when the ratio of the thrust acceleration to the
initial gravitational acceleration is much less than unity and the time or
the polar angle measured from the initial position is not too large. Tra-
jectories involving several revolutions would have less error accumulation
if the reference orbit sere re-established after each revolution. The
necessary analysis was carried out, using the first-order perturbation
theory for elliptical orbit starting conditions, to accomplish the re-
establishment of the reference orbit. This technique gives a solution
consistent through second~order. Since these perturbation solutions are
applicable to arbitrary thrust angles, they complete a class of trajectories
which includes previously published solutions for radial and circumferential
thrusting.

Further analysis is required to establish the accuracy cf the

perturbation solutions as a function of thrust acceleration magnitude
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and time, This could be accomplished by comparisons with precision
numerically computed trajectories. Additional effort could be devoted
to application of the results. A whole class of optimzation problems,
namely those involving the selection of an optimal thrust direction,

can be treated using the perturbation solutions. These results would
find application to spacecraft in which the thrust vector, for guidance
reasons, is most conveniently directed at a constant angle to the radius
vector. Other obvious extensions of the perturbation results would include
the effect of time varying thrust angles and larger starting orbit eccen-
tricities. Provision for treating out-of-plane motion would also be
desirable.
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